

IPCC AR5: new demands, challenges and responses

Y. Malysheva, S. Nikonov, V. Balaji, C. Rehbein

GFDL

AR4 Data Portal Usage

- Volume
 - 12 TB of IPCC data
- Traffic
 - ~ 20 Mbps speeds
 - 5.5 TB/year soon after publishing
 - Went up to 30.4 TB in 2008

AR5 estimates

Volume

As much as 1 Petabyte of published data

Traffic

Can anticipate hundreds of TB/year soon after publishing

How we did it last time

- Experiment is run and data is recorded
- Custom CMOR application is run on data to create CMORized copy
- After a Quality Check, a set of scripts add
 the necessary metadata and transfer to
 data portal

Potential Bottlenecks

- Publishing and CMOR
 - Data is sometimes archived before CMORization
 - CMOR rewrites all data that is published, which uses up both processing time and tape space
- Network and traffic

Solutions

- Fremetar integrated with FRE (FMS Runtime Environment)
 - Replaces new CMOR application
 - Saves processing and unarchiving time, tape space
- THREDDS(Thematic Realtime Environmental Distributed Data Services)
- LAS (Live Access Server)
 - On-the-fly visualization and access to data

Solutions (cont.)

- New Data Portal hardware
 - At least 500TB of space
 - Currently 150TB
- Web Services
 - Analysis figures generation
 - Downscaling

Statistical Downscaling

- Simulates sub-grid-scale climate based on output from global model and observations at data point
- Downscaling Process
 - Develop statistical relationship between model and observations (1960-1990)
 - Test relationship using subset of historical data (1990-2000)
 - Use relationship to generate future projections at the regional to local scale (2000-2100)

- Architecture
 - Javascript Web Interface
 - Calls R downscaling model
 - Interface displays figures once
 - dowscaling is computed

- Downscaling Model
 - Current model is for illustrative purposes only
 - Written in R statistical language
 - Developed by Katharine Hayhoe and team at ATMOS research
 - Current model downscales temperature,
 other models are being developed

- Interface
 - Choose experiment, variable and (in the future) Observation data, time frame
 - Calls webservice, displays resulting figures through browser interface

Thanks!

• Questions?

Why do we need downscaling?

Example: Average winter snowfall in the Great Lakes

Kissing Bridge, NY

Downscaling Step 1:
Develop relationship
between observed and
large-scale climate
fields

Ex: Northeast US JJA Tmax (1990-1999, Hayhoe et al. 2008)

Downscaling Step 2: Use relationship to generate high-resolution fields from large-scale forcing

Ex: Northeast US JJA Tmax (1990-1999, Hayhoe et al. 2008)